
NASA Technical Memorandum 103289 NASA-TM-10328919910002902

Shared Direct Memory Access
on the Explorer II-LX

Jeffrey L. Musgrave
Lewis Research Center
Cleveland, Ohio

September 1990

NOV1 9 19_1

LANGLEY RESEARCHCENTER
libRARy /','A._&

.._ HAMP'1ON, VI_GINLA

N/ A

Table of Contents

Introduction

System Level Requirements 1

Software Requirements 1

Approach 2

Features and Limitations 2

Example of Memory Sharing 3

Shared Memory

Shared Memory from Lisp 5

Shared Memory from Unix 6

Administration of Memory 7

Modes of OperatiOn 7

Usage

Using the Primitives 10

Examples 12

Building an Application 17

Making Changes 19

Appendix 1 20

Appendix 2 21

Bibliography 42

Index 43

t',,3q t- I ts-

I. INTRODUCTION

In the area of intelligent control systems, typical problems require an integrated
computing environment for handling the special processing needs associated with the various
levels of a control hierarchy. Lower levels which interact directly with the process require
high degrees of accuracy and speed while higher levels which interact with subsystems in the
control hierarchy are more decision oriented and better represented in a symbolic processing
environment. This work is directed toward providing enhanced computational capabilities and
exploiting the special features of the Texas Instruments (TI) Explorer II-LX for rapid
prototyping of intelligent control systems.

The TI Explorer II-LX is a unique machine having two microprocessors contained in a
single chassis. One microprocessor is a Lisp chip where Lisp, a commonly accepted language
for AI applications, is implemented in hardware. The other is a M68020 which is the first
full 32-bit implementation of the M68000 family. The operating system on the Explorer is a
Common Lisp Interpreter, and System V Unix runs on the M68020. The goal is to make this
powerful feature more accessible to the user without requiring advanced knowledge of the
low level details associated with shared memory.

A. System Level Requirements

The following is a list of hardware and software requirements for utiliring the shared
memory feature on the TI Explorer II-LX system:

1. TI Explorer II-LX,

2. Explorer Software Version 4.0 or Higher,

3. System V Unix Version2.2 or Higher,

4. C Compiler and Fortran Compiler (optional),

5. LX Software Version 3.0 or Higher.

B. Software Requirements

1. Integration in terms of data sharing between computationally oriented
programming languages and those more suited to the implementation of
"intelligent" or higher level functions which are decision oriented.

2. Simple methodology with a generic structure for relative ease of use and
maximum flexibility.

3. Streamlined approach for high performance in terms of raw speed to maximize
benefits associated with concurrent processing.

4. Synchronous and asynchronous processing capability with assured data
integrity.

C. Approach

• Shared direct memory access (SDMA) is the direct sharing of information through
memory common to each of the microprocessors on the TI Explorer II-LX. In particular, the
setup of the shared memory and an example are given in Chapter 5 of [1]. The goal here is
to design a suitable interface for using the shared memory capability effectively without
requiring explicit knowledge of the low level details.

D. Features and Limitations

Before using SDMA, the programmer should make a careful assessment of his
computational requirements and needs with respect to the user interface in both the short and
long term. Clearly, an SDMA solution will be more complex in design and implementation
and consequently more difficult to debug and verify than more traditional software solutions.
Additional burden will be placed on the programmer since he must be well versed in a variety
of languages with a variety of programming styles.

In order to assist the programmer in assessing the potential costs and benefits of an
SDMA solution for his particular problem, the following provides an outline of some
important topics for consideration.

Features

Integrated environment for numerical and symbolic processing.

Synchronous or asynchronous processing capability.

Performance enhancements resulting from two processors working in parallel
or tandem with solutions in the domain most suited to the problem
description and structure.

Window driven user interface on the Lisp side complete with menus and
mouse.

2

Object oriented style of programming in Lisp for rapid design and
enhanced reusability of code.

Capability for treating the M68020 as a slave processor by the Lisp side
resulting in stream-lined applications with a single driver.

Limitations

Complex solution involving different software environments with a parallel
architecture.

Difficult design since applications must conform to the interface established
by the SDMA primitives.

Only single blocks of shared memory are currently supportedrequiring all
shared information to pass througha single data channel.

Data buffering is not supported on either the Lisp side or the Unix side. If
the application requires this capability, then the programmer is responsible
for setting up the buffer and time stamping the data. However, this can be
accomplished in the current framework without modification to the primitives.

Applications are more difficult to debug since an SDMA solution requires a
parallel architecture and proper usage of the primitives.

E. Example of Memory Sharing

In order to motivate the shared memory approach and provide a clearer picture of
what is meant by shared memory, a simple example is given which makes use of the shared
memory capability.

Let f0 represent a Fortran program with input/out-putbehavior of the form

xt+,= f(_,ui)

where x _ _RNand u _ _RM. In a similar fashion, let g0 represent a Lisp program with
input/output behavior of the form

uI = g(_).

Given the above data requirements, the vector x_must be passed from Fortran to Lisp where
the vector th is generated. Vector u t must then be given back to the Fortran program in order
to perform a major iteration (ie. generate x_.t). Given the fact that disk access is typically the

3

slowest operation performed by a computer, a file sharing approach would make the above
scenario impractical for most applications since data must be passed twice for each major
iteration. However, shared memory may be utilized to dramatically enhance performance
without converting g to Fortran or f to Lisp.

Using the above notation, a shared memory approach as proposed in this work would
take the following form:

i=0
while Not Finished do

Send x_to shared memory from Fortran;
Read x_from memory and give to the waiting Lisp function

g and generate ui;
Send uI to shared memory from Lisp;
Read th from memory and give to the waiting Fortran function

jr to generate x_+fi
Set i to i + 1;
Check stopping criterion.

In this example, parallelism cannot be fully exploited due to the information processing
requirements imposed by the problem structure. However, benefit is achieved by allowing
two different computer programs running on separate microprocessors to pass information via
common memory.

H. Shared Memory

The Explorer and the M68020 based machine are virtual memory systems. In other
words, physical memory is not accessed directly by programs. Programs refer to virtual
memory addresses which reside in physical memory (ie. RAM) or on disk. The memory used
here will reside in physical memory in order to reduce access time.

A block of memory in a computer may be visualized as in Fig. 1. In general, the data
structure corresponding to the physical memory can be of any design. However, it is simplest
to visualize the physical memory as an array of contiguous data blocks containing an address
and the data associated with the address as shown. Consequently, data can be shared between
the two processors by setting up a block of physical memory and providing each with the
addresses of all allocated memory cells. Once the address of physical memory is known,
either processor can read from it or write to it just like any other cell in memory without
regard to where the phys!cal memory actually resides. This is the basic advantage of SDMA
since direct memory access is the fastest way to store and retrieve information and the details
with respect to the memory configuration are transparent to the application.

4

Fig. 2 shows possible paths of data Address Dora
flow under the current architecture. It

should be clear from the figure that a great _ 0__

deal of flexibility exists in the utilization of 1
information and the partitioning of the task 32
based on the strengths and weaknesses of
each microprocessor. Hence, it is advisable
to use the structure inherent in the problem
description as a guide to determining the
interaction between the subtasks which

constitute a proposed solution. A
streamlined design with a configuration
based on the structure of the problem will
runfaster and be much simpler to debug Fig. 1 Typical Block of Shared Memory
than an equivalent design where the
structure is imposed arbitrarily. Additional complexity results from the fact that parallel
architectures are relatively new and many programmers are unfamiliar with the common
pitfalls and how they can best be avoided.

In the current architecture, the block (multiple blocks are not supported in the present
design) of memory used for sharing information resides on the Unix side. Hence, the Lisp
machine must have access to the.68020-based processor board's on-board memory (termed
S1500 memory). In order to give the basic idea without getting bogged down in the details
(see Appendix), the following overview is given as found in [1]:

Step:

1. Allocate blocks of $1500 virmalmemoryfor sharing with the
Lisp pr0cessor.

2. Page the blocks in. (set up the virtual memory)

3. Lock the pages so they are not paged out to disk while
being used by an application.

4. Send the Lisp processor a memory map that indicates physical
memory addresses corresponding to the locked virtual memory
addresses.

5. Unlock the pages for reuse once the application has finished.

A. Shared Memory from Lisp

Once Lisp has been provided with a memory map of the wired down memory on the
M68020 processor board, access may be achieved by directly indexing the contiguous cells of

storage. TI has supplied several low-level
Lisp functions for performing this operation Ius_[
as listed in [1]. In other words, Lisp cannot
access the memory cells directly since they Object-Oriented
are not resident on the Lisp processor board, w;,do,,0r;venm,,_// _\. _Unix
Lisp must send data out or receive data via Environ._ ./

supplied procedures which index the _I_/ Shared Memo

contiguous cells of memory. In order to _ I_;sp __ _ M68020 _
perform this operation, the type of r- Processor -- -- Processor
information (eg. floating point, signed 1 -- I

integer, etc.) and the number of bits (eg. 16, _I_ Data Flow _€,
32, 64) must be consistent with the data Virtual Memoryspecifications set forth on the Unix side. In
order to avoid type conflicts, the default Fig. 2 Paths of Data Flow
data representation is 32 bit floating point
since this is the most general data type for typical engineering applications. Hence, all data
sent out by Lisp is converted to this format before being placed in shared memory. This
operation is transparent to the user but should be kept in mind when designing code.

In order for data to be sent or received, the number of elements to be shared at any
instant must be known in order for all the data to be read. For simplicity, the maximum
amount of data to be shared on any given cycle is written out to memory. However, this
approach may be very costly in terms of overall performance if the application demands a
high variation in the amount information to be shared on consecutive cycles. In the present
setting (ie. Intelligent Controls), the variation in the amount of shared information will be
small since the manner in which the data is used should not change as a function of time
thereby providing justification for the approach taken here.

B. Shared Memory from UnLx

Shared memory is allocated from the M68020 processor-based memory. Hence, the
size of the memory and the type of data contained therein are defined by the Unix based
application in a manner consistent with the information sharing requirements established for
the task. On the Unix side, the shared memory is deirmed as an array of 32 bit floating point
numbers of length MAX_DATA, where MAX_DATA is a prespecified constant (default
value is 100). The maximum amount of shared information on a given cycle is bounded by
MAX_DATA - 3. Three cells of shared memory are required for administrative purposes as
shown in Fig. 3. The purpose for the reserved cells in the shared memory block will be
discussed in detail below.

Since the interface with shared memory is an array, care must be taken when
accessing the information'since arrays are passed by reference as opposed to value in most
general purpose high level programming languages (eg. Fortran). In other words, reassigning
elements in the array immediately alters the contents in shared memory. A common hazard is
the contamination of the data or the control flag used to describe the current state of memory

by the Lisp routines before the Unix side
Control Flog

has finished reading the data. In order to
avoid this event, a temporary buffer is used
to hold the data until it is needed for
processing while simultaneously releasing
the Lisp based application to continue

processing. The Lisp side need not be vAx- 2 File descriptor
concemed with such details since access to M_x- 1 _ Mem_-ySegmentLD.

shared memory is achieved via a procedure Fig. 3 Reserved Memory Cells
call which forces usage of a temporary
buffer for direct access of information since
Lisp functions pass all parameters by value. This is the most fundamental difference between
the Unix side and the Lisp side with respect to usage of the common memory and should be
kept in mind when using the primitives.

C. Administration of Memory

The total number of floating point numbers which may be sent or received is
determined by the Unix side since the shared memory resides on the M68020 board. The
total number of memory cells has a default value of 100. However, not all of the cells can be
used for data sharing since three of them are required for administrative purposes as shown in
Fig. 3.

The first cell (control flag) in the shared memory block is used to specify the state of
the block. In particular, two states are needed for the handshaking associated with any of the
described modes of operation. The first state, denoted by MEM_READ, is an indication that
the memory contains newly written information. The second state, denoted by
DONE_READING, is an indication that the newly written information has been read by the
process requiting the data (see Figs. 4 - 6).

The last two blocks are descriptors which are needed to release the locked down
memory to the heap after the sharing process has terminated. If these are corrupted, the
memory cannot be released and an error message will be given. If a large amount of shared
memory is required (ie. larger than 97 cells) then the default value must be changed to
accommodate the information. However, it is very important that a sufficient amount of
memory is allocated in order to avoid contamination of the descriptors. If more memory is
requested (via user specified input) than has been allocated, an error will be given and the
process aborted. Hence, the advantage of sending the same number of blocks on every cycle
based on some a priori calculation is the guarantee of sufficient memory to share the
necessary data before the application begins.

D. Modes of Operation

Associated with the shared memory are three basic modes of operation.

7

StoLe: DONE READING

CONTRDLFLAG 0 .,,

r Lisp Based
Unix Based Applicotion
Application -- -

READ DATA _

WRITEDATA f SDMA PRIMITIVES o ,_
0 Ill / 1

II] 2,

State: MEMORYREAD '_3

."" z SET CONTROLFLAG

I

Fig. 4 Read Mode Cycle

Read Mode:

A Lisp based application receives information from an independently operating Unix
based application as shown in Fig. 4. The Unix based application is responsible for
terminating the shared memory connection by sending a FINISHED message to the memory
driver when all data have been sent.

State: DONE READING
Ski' CONTROLFlAG

2
, Unix Based

Lisp Bosed
ApplicaLion ...- Application

f READ DATA t
WRITE.DATA SDMA PRIMITIVES

°" 1
ii 1
,z_ State: MEMORY READ z

I

I "" z SET CONTROLFlAG
5

Fig. 5 Write Mode Cycle

Write Mode:

A Unix based application receives information from an independently
operating Lisp based application as shown in Fig. 5. The Lisp based application is
responsible for terminating the shared memory connection by sending a FINISHED
message to the memory driver when all the data have been sent.

Slate: DONE READING
o m _-T CONTROLFlAG 0

2 I _ I1 2

._, 12 3
'3

Unix Based SOMA PRIMITIVES Lisp Based

Application State: MEMORYREAD Application

WRrrEDATA_ , ._-- READDATAt
z _ CONTROl_FLAG

I 1
'2 2

I I

Fig. 6 Read/Write Mode Cycle

ReadlWrite Mode:

A Unix based application and a Lisp based application have sequential data
processing requirements as shown in Fig. 6. In other words, a Unix application
needs data from Lisp in order to generate data needed by Lisp to generate data
needed by Unix etc. Here, the Unix based application is arbitrarily given
responsibility for termination.

IT[. Usage

The shared memory primitives on the Unix and Lisp sides axe written with the view of
the Explorer as the master and the M68020 as the slave. The reason for this perspective is a
direct result of the flexible window environment and user interface supported on the Explorer.
Typically, applications will be initiated from a command menu in a window-based
environment for the applfcation and the primitives are designed in a fashion consistent with
this view.

9

A. Using the Primitives

Unix Side

On the Unix side, a driver must be supplied for each mode of operation using a
prespecified naming convention. In particular, for any given mode, the user is responsible
for supplying the routine for his application as well as two dummy programs (stubs) for the
other modes which are not used. However, stubs (dummy routines with no statements) can
be generated readily from the examples provided with the SDMA primitives.

The following routines must be supplied by the user in order to interface with the
Unix side shared memory drivers which have been supplied. In particular, the name of the
procedure must appear exactly as listed below (in lower case). The vector of information to
be Shared is passed by reference from the routine via the parameter list. Consequently, the
routines do not return a value explicitly (ie. they are not functions).

Procedure

readdriver - User defined driver for the read mode of the shared
memory. This procedure generates a vector of data of
some specified length for use by the Lisp side for
each invocation.

.Parameters

vector Array of 32 bit floating point numbers of length
MAX_DATA which contains the shared data.

num..pts Maximum number of memory cells requested to share
the data.

Procedure

writedriver - User defined driver for the write mode of the shared

memory. This procedure takes a vector of data supplied
by the Lisp side of some specified length and performs
any necessary processing for each invocation.

Parameters

vector Array of 32 bit floating point numbers of length
MAX_DATA which contains the shared data.

10

num._pts - Maximum number of memory cells requested to share
the data.

Procedure

readwritedriver - User defined driver for the read/write mode of the
shared memory. This procedure takes a vector of
some predetermined length from the Lisp side and
generates another vector of data for the Lisp side
on each invocation.

Parameters

vector - Array of 32 bit floating point numbers of length
MAX_DATA which contains the shared data.

num__pts - Maximum number of memory cells required to share
the data.

Lisp Side

On the Lisp side, a slightly more general procedure can be deemed as a result of the
flexibility of the Lisp programming language. In particular, it is not necessary to prespecify
the names of the routines for each of the modes associated with the shared memory before
run time as done above. As a result, it is much simpler to design a general purpose program
for dealing with the various cases of interest.

Procedure

sdma_driver Top level driver for the shared memory on the Lisp side.
All shared memory applications must invoke this procedure
to manage the transferral of data between a Unix application
and a Lisp application.

Parameters

lisp_simu - Name (symbol) of the Lisp driver for the simulation.
Since this is the highest level, the driver does not
take any arguments.

11

unix_simu - String specifying the path, name and arguments of
the Unix side driver for the application.

mode - Mode of operation for which the memory will be used.
Mode must be one of the following:

READ-ONLY
WRITE-ONLY
READ-WRITE

num._pts - Maximum number of data points to be shared on each
invocation of the routine.

Optional Parameters

init-proe - Name (symbol) of a Lisp function which supplies any
initialization information required by the Unix simulation
before the start of the application for either the READ or
READ-WRITE mode of operation.

B. Examples

In the following paragraphs, three simple examples are given which demonstrate the
usage of the shared memory primitives. In each case, an array of data of some predetermined
length (5 in this case) is generated and stored in shared memory at which point a waiting
process retrieves the information for further processing.

In order to test the examples, the SDMA primitives and examples must be loaded from
the distribution tape, and a listing of the tape contents may be found in Appendix 1. An
installation utility has been written in order to facilitate the loading of fries from the
distribution tape into the appropriate directories on your Explorer system. To load the SDMA
primitives and examples, copy the file "Install.lisp" from the distribution tape to your working
directory. Load the file contents by substituting your directory for "working__directory"in the
following Lisp form

(load "sys:working__directory;install.lisp").

The installation utility may be run by issuing the Lisp command

(instaU-sdma).

12

Once the files have been loaded from the distribution tape, the SDMA system and package
must be created by executing the form

(make-system 'SDMA).

On the Lisp side, the SDMA primitives and examples are located in the directory
"sys:public.sdma". The examples may be run by evaluating the lisp forms

(sdma:runl) -- example1
(sdma:run2) -- example2
(sdma:run3) -- example3

for each of the three examples to be discussed below.
On the Unix side, both Fortran and "C" source code for the examples have been

provided and may be found the files "/sdma/example/fsdma_stubs.f" and
"/sdma/example/sdma_stubs.c" respectively. The "C" examples may be generated by a "super
user" without modification by executing the Unix command

make c_examples

in the "/sdma/example" directory. If "super user" status is not obtainable, the sdma directory
must be copied to the user's directory and the appropriate pathnames changed in the makef'ile.
The Fortran examples may be generated in a similar manner (ie. make for_examples).

All macros for the SDMA are defined in the include Erie"/usr/include[smem_dat.h".
The source for the open and close operations for the SDMA may be found in
"/usr/include/smem.h" and follow the code given in [1].

Examplel -- Read Mode

This example demonstrates the usage of the read mode option. In this simple
example, an array of some specified length is generated on the Unix side and then written out
to memory to be read by the waiting Lisp application. Lisp reads the data in the memory and
then writes the contents to the default data stream. This process is repeated a f'vted number
of times until the Unix side sends a FINISHED message to terminate the process.

Lisp Code

(defun example1 (vector) ;; Vector contains the shared data!
"This example takes a vector sent by the Unix side and displays
it on the TrY. Test of READ-ONLY mode."

(print "Information received from Unix!")
(print vector)

)

13

(defun runl 0 ;; Execute this function to run example one!!
"Example of Read only mode for SDMA."

(sdma-driver 'examplel "/sdma/example/c_examples read 5" READ-ONLY 5)
) ;; examplel is the name of the Lisp simulation.

;;/sdma/example/c_examples is the path and name of the Unix simulation.
;; Fortran examples can be executed by substituting for_examples for
;; c_examples above.
;, The number 5 represents the quantity of shared data.

c Code

void readdriver (vector,num_pts)
/* Example of a user supplied procedure which writes information

to the shared memory to be accessed by a Lisp application. */

float vectorl-l;/* Shared data from memory. */
int *num_pts;/* Must pass by reference to conform with

Fortran standard. */
{

int j;

if (vector[I] > 15.0) /* Stopping Criterion */
vector[0] = (float)FINISHED;

/* Send a FINISHED message to
terminate the sharing process. */

else

for(j=l; j <= *num_pts; j++)
vector[j] = j + (float)vector[*num_pts];

}

Example2 -- Write Mode

This example demonstrates the usage of the write mode option by performing the
converse of examplel. Here, an array of data is generated by Lisp and sent to Unix for
processing (e.g. the vector is written to the TYY). One important difference with respect to
examplel above is the array printed by the Unix application cannot be viewed explicitly since
the program is executed from the Lisp side. As a result, the current output stream is set to
the Lisp Listener which cannot be accessed directly from the Unix side.

14

Lisp Code

(defun example2 (vector) ;; Vector contains the shared data.
"This example generates the data vectors to be written to the Unix
side. Demonstration of the Write only mode."

(let* ((temp vector))

(cond ((= count 6) ;; Quitting criterion
(serf (aref temp 0) (coerce FINISHED 'float))
temp)_ ;; Send a FINISHED message

;; to terminate the sharing
;; process.

(T ;; Default
(do ((i 0 (1+ i)))

((= i 5)) ;; 5 elements to be shared

(serf (aref temp i) (+ i (* 5 count)))
;; Generate data

) ;; end of do
(print "Information sent to Unix!")
(print temp)
(incf count)

temp) ;; Return temp to be written to shared memory.
)

)
)

(defun run2 0 ;; Execute this function to run example 2!!
"Example of Write only mode for SDMA."

(serf count 0) ;; Initialize the counter
(sdma-driver 'example2 "/sdma/example/c_examples write 5" WRITE-ONLY 5)

) ;, example2 is the name of the Lisp simulation.
;;/sdma!example/c_examples is the path and name of the Unix simulation.
;; Fortran examples can be executed by substituting for_examples for
;; c_examples above.
;; The number 5 represents the quantity of shared data.

15

C Code

void wfitedriver (vector,num_pts)
/* Example of a user supplied procedure which reads data written

to the shared memory by a Lisp application. */
float vector[i;/* Vector of shared data. */
int *nurn_pts; [* Number of data pts. to be shared. *[

{
int i;

for(i=l; i <= *num_pts; i++)printf("%fkn",vector[i]);
}

Example3 -- Read/Write Mode

The following is a simple example of an application of the read/write mode of the
SDMA. A vector of data is generated by the Unix side and passed to shared memory. The
memory is read by a Lisp application where its contents are written to the standard output.
Once displayed the data are incremented by some fixed amount and then displayed again
before being written back to shared memory for the waiting Unix application. This process
repeats itself for a fixed number of times before a FINISHED message is sent to Lisp via the
Unix application.

Lisp Code

(defun example3 (vector) ;; Vector contains the shared data.
"This example is a test for the read/write mode for SDMA."

(print "Information sent to Lisp!")
(print vector)

(let* ((temp vector))

(do ((i 0) (1+ i))
((= i 5)) ;; Stopping criterion

(serf (aref temp i) (+ (aref temp i) 5));; Gen new vector.
)
(print "Information sent to Unix!")
(print temp)
temp) ;; Example3 returns temp to be written to shared memory.

)

16

(defun run3 0 ;; Execute this function to run example3
"Example of read/write mode for SDMA."

(sdma-driver 'example3 "/sdma/example/c_examples rdwrite 5" READ-WRITE 5)
) ;; example3 is the name of the Lisp simulation.

;;/sdma/example/c_examples is the path and name of the Unix simulation.
;; Fortran examples can be run by substituting for_examples for
;; c_examples above.
;; The number 5 represents the quantity of shared data.

C Code

void readwriteddver(vector,num_pts)
/*This is an example of a simple application of the read/write mode

of the SDMA.*/
float vector0;/* Vector of data to be shared. */
int *num_pts;/* Number of data pts. in memory. */

I
int i;
void write_vector();/* Write *num_pts contents of vector

to the 'ITY. */

if (vector/l] > 35.0)/* Stopping Criterion */
vector/0] = (float)FfNISHED;

/* Send Finished message to terminate
the sharing process. */

else
I

printf("Information sent to Unixkn");
write_vector(vector,*num_pts);
for(i=l ;i <= *num_pts; i++)

vector/i] = (float)i + (float)vector[*num_pts];
printf("Information from Unix to LispXn");
write_vector(vector,*num_pts);

C. Buildingan Application

Once the design and coding of your particular application on both the Unix and Lisp
sides has been completed, you must combine the shared memory primitives with your
application in order to create an executable program.

17

1. Lisp Side

In order to use the primitives in your application, make the SDMA system as shown
above. Once the SDMA system has been created, the "sdma-driver" may be accessed in
manner consistent with the protocol demonstrated in the examples above. Keep in mind that
the Lisp function you supply as an argument to the "sdma-driver" must return a vector of data
to be written to shared memory if either "write" or "rdwrite" mode is used.

2. Unix Side

On the Unix side, your application must be linked along with the Fortran or "C" driver
and written to an executable file in your work directory. The name of the executable fde is
used by the Lisp side driver for starting the simulation by issuing a sheU command along with
the appropriate arguments. In an attempt to ease the integration effort on the part of the
programmer, the "make" utility is used for building the Unix-based application with the
SDMA primitives.

The following steps must be performed for the final integration:

Step:

1. Copy the makefile supplied with the SDMA examples into your work
directory with the command

cp/sdma/example/makef'de "work directory"

where "work directory" is the appropriate pathname.

2. Modify the makef'de to suit your specific application by specifying the names
of the simulation drivers in the following manner:

C_OBJECTS = "List of all *.o fries used in your simulation.",

or if your simulation is written in Fortran then

F_FILES = "List of all *.f fries used in the simulation."

F_OBJECTS = "List of all corresponding *.o files."

3. Run "make" in your work directory to generate executable code for the Unix
based application. Make sure you have changed the name of the executable
fde to a name consistent with usage in the Lisp side simulation driver. For
example:

18

make c_examples

will make the executable file "c_examples" for the "C" examples associated
with the SDMA in your work directory. The following would be used to
make the executable file "for_examples".

make for_examples.

See the manual on Programmer Tools for further discussion of the "make"
utility.

D. Making Changes

Typical changes to the SDMA primitives as supplied involve changing the default data
type used for the memory or altering the size of the memory block. The alterations can be
made very simply by changing the Macros located in the include file
"/usr/include/smem_data.h".

Other changes involving the basic structure and/or operation of the primitives can be
achieved by altering the supplied source code. The Lisp source is readily accessible as
mentioned above. The Unix side source is contained in the file "/sdma/sdma_driver.c".
Source code for the opening and closing of the shared block of memory can be found in
"/usr/include/smem.h".

If any changes are made to the include files associated with the primitives, the make
utility must be executed in order incorporate the alterations into the current build of the Unix
based application.

19

APPENDIX 1

Contents of the distribution tape.

Install .lisp
defsystem.lisp
SDMA.system
SDMA-driver.lisp
SDMA-driver.xld

SDMA-examples.lisp
SDMA-examples.xld
c_sdma.c
fsdma_driver.f
sdma_driver.c
fsdma_stubs.f
makef'tle
sdma_stubs.c
smem_dat.h
smem.h

20

APPENDIX 2

** Procedure Design Specification for SDMA primitives on the
** Unix side of the TI Explorer II-LX

Macros:

MAX_DATA 100 -- Maximum number of data blocks
in the shared memory.

MEM_READ 1 -- Flag indicating the receiving
process has accessed the information
provided by the sending process.

DONE_READING 2 -- Flag indicating the receiving
process has NOT accessed the information
provided by the sending process.

FINISHED 3 -- Flag indicating the sending of
information across the shared
memory is complete.

QUIT 0xFFFF -- Quit flag used to terminate the
data transfer procedures.

READ_ONLY 0 -- Indication of read-only mode.
(ie. The Lisp side is reading
data from the Unix side.)

WRITE_ONLY 1 -- Indication of the write-only mode.
(ie. The Lisp side is writing
data to the unix side.)

READ/W'R1TE 2 -- Indication of the read/write mode.

NOCACHE 0 -- Turn the CACHE memory off.

CACHE 1 -- Tum the CACHE memory on.

PAGES btopgs(MAX_DATA * sizeof(float))
-- Number of pages of S1500 memory

to be wired down for the given
application. Note: 32 bit words
are the accepted medium of data
transfer. If more accuracy is
required, then another data type
must be substituted for "float".

21

Procedure: Setup_SDMA

Purpose:

This procedure takes the virtual address of a data array
of length MAX and builds a data structure which may be
accessed by the Lisp side for the transfer of data. Basic
error checking is performed on the wired down memory in
order to ensure that no errors will occur during the data transfer.

Inputs:

mode -- mode for which the memory will be used.
In particular, three modes are defined:

READ_0NLY
wRrrE.0NLY
READ]WRITE.

data -- address of the memory used for data transfer.

Outputs:

success -, return a success flag indicating the status
of the attempted operation.

Local Data:

command -- a structure of type SDMA which is predefined
in smem.h and used to hold the data required to
perform the shared memory operations.

sdma_fd -- an integer which acts as a descriptor for the
virtual memory to be accessed by the Unix
system.

ds_fd -- an integer which acts as a device descriptor
for the logical device used to access the
shared memory by System V Unix.

sdmaseg_id -- an integer representing the memory segment
identification number.

22

num_pages -- an integer indicating the number of required
pages of S1500 memory that exist whenever
the ioctl procedure call is made.

paddr -- array of length PAGES containing the
address of each page of wired down S1500
memory.

Calls:

BTOPGS -- macro which does not require the beginning
address of the memory segment in order to
determine the memory requirements. This
macro returns an integer representing the
number of pages necessary for the worst possible
page alignment of the data array. Note: this
macro is different from btopgs (See LX User
Manual for a more detailed discussion).

open -- "C" primitive which opens an external device
for read-only, write-only, or read/write
access.

ioctl -- Input/Output control function which provides
an interface to the SYSTEM V kernel. Three
possible actions may be performed and are
outlined as follows:

SIOCGET - finds the number of currently
available pages of S1500 memory to
be wired down.

SIOCSET - locks down the requested
pages of $1500 memory in
order to ensure that it

is not used by any other
process utilizing blocks of S 1500
memory. This option requires
the last argument of ioctl to
be instantiated to a cmd
data structure as defined in
"smem.h".

23

SIOCREL release the locked down
pages of $1500 memory.
The last argument of ioctl is
an integer that identifies the
segment of memory to be unlocked.

Method:

"Initialize the SDMA command data structure as follows:"
Set the .vaddr (virtual address) to the address of the data

array,
Set the .segsz (segment size) to the number of PAGES

required by the data array,
Set the .cache flag to NOCACHE,

"Having the cache turned off will degrade the
performance of the shared memory procedure. Hence,
the cache should be turned off only when data integrity
becomes a serious concern given various computational
requirements."

Set the .frame to point to paddr which contains the base
physical addresses for the pages of shared memory.

"Open the shared memory device for Read/Write access. The shared memory
is viewed as a logical device by Unix and is opened by the following
procedure call."

Set the sdma._.fdto open("/dev/sdma",O_RDWR).

"Error Checking."
If the sdma_fd is less than zero (ie. -1) then

print an error message, otherwise the open call executed properly.

"Determine the number of pages which is currently
available to be locked down by the caller."

Set num_pages (number of pages of wired down memory) to
ioctl(sdma_fd, SIOCGET, 0).

"Error Checking."
If num_pages is less then PAGES, then a sufficient amount

of S1500 memory does not exist for the requested data
transfer. MAX must decrease or other administrative
action must be taken in order to provide the necessary
memory. Notify user via a message sent to the terminal
and kill the process.

24

"Lock down the necessary memory!"
If num_pages is greater then PAGES then

set sdmaseg_id to ioctl(sdma_fd, SIOCSET, &command)
which will return the S1500 memory segment ID based
on the cmd (command) data structure def'med earlier.

"Open the data stream defined by the user (ie. ds__83)."
Set ds__fdto open("/dev/ds83", O_RDWR) where a f'fle

descriptor ID is returned ff the device could be opened
for READ/WtLITE access and a -1 otherwise.

"Error Checking."
If the ds_fd is less then zero than an error condition

has been observed. Hence, an appropriate error message
must be written and the process terminated.

"Write the information in the command structure to the
initialized data stream."

write(ds__fd,&command, 8)

"Attach the physical addresses of the wired down memory
in the paddr array to the data stream."

write(ds_fd, paddr, PAGES * sizeof(float))

"Close the logical device."
close(ds_fd)

"The last two elements in the data array are reserved
to act as registers containing information about the
segment of S1500 memory."

Set data[MAX-2] to the sdma_fd.
Set data[MAX-l] to the sdmaseg_id.

Return success to caller since the SDMA has been setup.

Procedure: Close_SDMA

Purpose:

This procedure uses the last two elements of the data array
which contain the device f'tle descriptor and the ID of the
shared memory and unlocks the wired down memory. The shared
memory is restored to the system heap and the process terminated.

25

Inputs:

data -- array containing the necessary administrative
information to unlock the wired down memory of
length MAX_DATA.

Outputs:

success -- flag indicating the SDMA has been closed properly.

Local Data:

None.

Calls:

ioctl -- Input/Outputcontrolfunctionwhichprovides an
interfaceto the SYSTEMV kemel.

Method:

"Wait until the Lisp side has sent a quit message
indicating a termination of the Lisp side driver."

While data[0] <> QUIT do nothing until the condition is true.

"Release the wired down $1500 memory and terminate the process."
If ioctl(data[MAX-2], SIOCREL, data[MAX-l]) < 0 then

print an error message notifying the user that
the memory could not be unlocked and return NOT success.

Else return success.

Procedure: Sdma_Driver

Purpose:

This procedure is the driver for the shared memory
primitives for System V Unix. The options are passed
to this procedure via the command line and branches are made
based upon the indicated mode.

26

** Note: special considerations are necessary if the
implementation of this routine is done in Fortran.
In particular, a call will be made to get__argand
to a SDMA_DRIVER written in C which handles the
method outlined below.

Inputs:

mode -- The mode of operation for the shared memory.
In particular, modes are entered via the
command line in lower case as follows:

read
write
rdwrite.

num_pts -- The maximum number of data points to be
passed across the shared memory.
This information is provided via a command
line argument as well.

unix_simu -- Driver for the Unix process with functionality
based upon the selected mode of operation. The Unix
process must conform to the established naming conventions
and be linked in with the f'mal bdfld. The naming conventions
for all three modes are as follows:

readdriver -- READ MODE
writedirver -- WRITEMODE
readwritedriver -- READ/WRITEMODE.

Outputs:

None. (Top level driver)

Local Data:

None.

Calls:

read_mode -- The Lisp side is reading from Unix.

write_mode -- The Lisp side is writing to Unix.

27

read_write_mode -- Two way data transfer is required over
the same address space in wired down memory.

Method:

"Branch on the mode of operation. The mode and the
number of data points are identified via the array argv[]
as specified for the Unix System V kernel.

If the mode is "read" then

If Not read_mode(unix_simu,num_pts) then notify the user
via a print message that an error has occurred.

Else if the mode is "write" then

If Not write_mode(unix_simu,num_pts) then notify the user
via a print message that an error has occurred.

Else if the mode is "rdwrite" then

If Not read_write._mode(unix_simu,num_pts) then notify the
user via a print message that an error has occurred.

Else the mode is unknown and the user is notified with an
appropriate error message.

Procedure: read_mode

Purpose:

Perform the necessary operations required to set up the
shared memory and establish the communication protocol
for passing information from the Unix side to the Lisp
side via the shared memory. This level is invariant
to the particular unix_sirnu used for generating data
for use on the Lisp side. In read mode, the Unix side
will terminate the process.

Inputs:

unix_simu -- Name of the function which will generate
the data to be passed to the Lisp side.

28

num_pts -- Number of data points to be generated upon
each consecutive call to the unix_simu.
Note: num_pts < MAX_DATA - 3. (nurn_pts
must be declared in the same location as
the unix_simu.)

Outputs:

success -- True, if the operation was successful and
False otherwise.

Local Data:

vector -- Array of length MAX_DATA of type float
which is the chosen data interface for
the shared memory used in the current set of
applications.

buffer -- Array of length MAX_DATA of type float
which is used to hold the data generated
by the Unix side until it is ready to be
sent to the Lisp side.

Calls:

setup_sdma -- Lock down the memory needed.

unix_simu -- Address of the function which will supply
information to the Lisp side.

close__sdma -- Return the wired down memory to the heap for
reallocation.

Method:

"Set up the shared memory."
If setup_sdma(vector) then begin passing information to the Lisp side.

"Wait for the Initialization data to be send by Lisp."
While vector[0] _z_DONE_READING do nothing.

"Generate the first vector of data to be read by Lisp
using any initialization data which has been supplied."

Set vector to unix_simu(vector,num_pts).

29

"Pass the data to the buffer for conformity with the
general looping algorithm."

Set buffer to vector.

"Loop until the Unix process sends a FINISHED message."
While vector[0] _> FINISHED do

"Tell Lisp that new information is ready to be read."
Set vector[0] to MEM_READ.

"Generate a new buffer to be sent to Lisp."
Set buffer to unix_simu(buffer,num_pts).

"Loop until the Lisp side has read the array of
data sent by Unix."

While vector[0] = MEM_READ do nothing.

"Once the Lisp has read the information in the
shared memory, the new data may be wired down from
buffer to vector."

If vector[0] = DONE_READING Then

"Transfer the contents of the data buffer to the
shared memory. Note: the Unix side driver must
generate a FINISHED message when the process
is complete."

Set vector to buffer.

"End of the While NOT FINISHED block."

If close_sdma(vector) then the wired down memory
has been returned to the system heap.
return a TRUE flag.

Else
"The memory could not be released so the
procedure must be terminated abnormally.
Print an error message and exit."

return a FALSE flag.

Else

"The set up of the shared memory failed.
Print an error message and exit."

retum a FALSE flag.

30

Procedure: write_mode

Purpose:

Perform the necessary operations required to set up the
shared memory and establish the communication protocol
for passing information from the Lisp side to the Unix
side via the shared memory.

Inputs:

unix_simu -- Name of the function which will use

the data generated by the Lisp side.

num_pts -- Number of data points required for
each call to the unix simu.
Note: num_pts <= MAX_DATA - 3.

Outputs:

success -- True, if the operation was successful and
false otherwise.

Local Data:

vector -- Array of length MAX_DATA of type float
which is the chosen data interface for

the shared memory used in the current set of
applications.

Calls:

setup_sdma -- Lock down the memory needed.

unix_simu -- Address of the function which will use the
information from the Lisp side.

close_sdma -- Return the wired down memory to the heap for
reaUocation.

31

Method:

"Set up the shared memory."
If setup_sdma(vector) then begin passing information to the Lisp side.

"Notify the Lisp side that the Unix side is ready to
begin receiving data."

Set vector[0] to DONE_READING.

"Loop until the Lisp side sends a QUIT message
to terminate the process."

While vector[0] _ QUIT do the following

"Once Lisp has sent the data, read it
and pass it on to the unix_simu."

If vector[0] = MEM_READ then

"Process the data using the provided Unix driver."
unix_simu(vector,num_pts).

"Free the Lisp side to write a new vector."
Set vector[0] to DONE_READING to indicate the

information has been read by Unix.

"End of the MEM_READ block."

"If the Lisp side has not sent down new information
then simply loop until information is in the
shared memory or a FINISHED message is received."

If close_sdma(vector) then the wired down memory
has been returned to the system heap.
remm(TRUE).

Else

"The memory could not be released so the
procedure must be terminated abnormally, so
print an error message and exit."

return(FALSE).

Else

"The set up of the shared memory failed.
Print an error message and exit."

return(FALSE).

32

Procedure: read_write_mode

Purpose:

Perform the necessary operations required to set up the
shared memory and establish the communication protocol
for passing information from the Unix side to the Lisp
side and back via the shared memory. Unix will send a
Finished message when the process has ended.

Inputs:

unix_simu -- Name of the function which will use data
from the Lisp side and generate new data
to be used by the Lisp side.

num_pts -- Number of data points required for
each consecutive call to the unixjimu.
Note: num_pts <= MAX_DATA - 3.

Outputs:

success -- True, if the operation was successful and
false otherwise.

Local Data:

vector -- Array of length MAX_DATA of type float
which is the chosen data interface for
the shared memory used in the current set of
applications.

Calls:

setup_sdma -- Lock down the memory needed.

unLx_simu -- Address of the function which will use the

information from the Lisp side and create new
data to be used by Lisp.

close_sdma -- Return the wired down memory to the heap for reaUocation.

33

Method:

"Set up the shared memory."
If setup_sdma(vector) then begin passing information to the Lisp side.

"Wait for initializationdata to be sent by Lisp."
While vector[0] <> DONE_READINGdo nothing.

"Generate the first buffer to be sent to Lisp
using any of the supplied initialization data."

Set vector to unix_simu(vector,num_pts).

"Loop until the Unix process sends a FINISHED message."
While vector[0] _ FINISHED do

"Tell the Lisp side that the data is ready."
Set vector[0] to MEM_READ.

"Loop until the Lisp side has read the
array of data and sent back new data."

While vector[0] = MEM_READ do nothing.

"Generate a new buffer to be sent to Lisp."
"Set vector to unix_simu(vector,num_pts).

"End of the while loop."

If close_sdma(vector) then the wired down memory
has been returned to the system heap.
return(TRUE).

Else
"The memory could not be released so the
procedure must be terminated abnormally.
Print an error message and exit."

return(FALSE).

Else

"The set up of the shared memory failed.
Print an error message and exit."

return(FALSE).

34

** Procedure Design Specifications of the SDMA Procedures for
** the Lisp side of the TI Explorer II-LX.

Global Data

LX:LX-SDMA-DATA-STREAM-ID #x83 Name of the shared memory
direct data stream.

QUIT #xFFFF Quit flag sent by the
Unix side when the simu-
lation has terminated.

MAX-DATA 100 Maximum number of data
elements to be passed
via the shared memory.
NOTE: this includes the
control values, hence the
actual number of data
cells is MAX-DATA - 3.

MEM-READ 1 Read the data in shared
memory.

DONE-READING 2 The data in the memory
has been read.

FINISHED 3 The information passing
process is complete and
processes on both sides
are permitted to end.

READ-ONLY 0 Flag for read only usage.

WRITE-ONLY 1 Flag forwfite only
usage.

READ-WRITE 2 Flag for read/write
usage.

35

Procedure: SDMA_DRIVER

Purpose:

This procedure is the driver for the shared memory procedure
on the TI Explorer. All process drivers etc. are called
from this routine based upon the given mode of operation.

Inputs:

lisp-simu -- name of the process function on the Lisp
side which drives the entire simulation

package developed and supplied by the user.
(Note: this function must take the list of data
written by the appropriate routine on the Unix
side as an argument.)

unix-simu -- string specifying the path and name of the
Unix side process driver as defined above.
Included with the name of the driver is a
list of command line arguments which includes
the mode of operation and the number of data
points to be passed.

mode -- indication of the mode of operation, ie.
READ-ONLY, WRITE-ONLY, or READ-WRITE.

num-data -- the total number of array elements to be
shared for a given mode of operation.

Optional Inputs:

init-proc -- routine which supplies any initialization
data required by the Unix process.

Outputs:

None.

36

Local Data:

data-stream -- defines the direct data stream over

which the shared information will pass.

Ix-vm-map -- virtual to physical memory map used in the
creation of the shared memory.

Ix-addr -- starting address of the virtual memory map.

info-vector -- vector of type float of length num-data
which is used to hold the information
loaded from the Unix side.

Calls:

Ix:open-direct-stream -- open a direct stream between
, the Lisp side and the Unix
side on the TI Explorer which
is uniquely specified by the
device number passed as an
argument.

lx:make-lx-vm-map -- create a map of $1500 virtual
to physical memory address
translations and store it on

the Lisp side.

Ix:ix-vm-map-vaddr -- access the memory map created
on the Lisp side and return
the beginning virtual memory
address.

Ix:issue-shell-command -- issue a TI System V command
specified by a string argument.

unwind-protect -- special form which protects
against nonlocal exits such as an
abort issued by the user. This
form allows the user to specify a
set of functions to be executed if
a nonlocal exit occurs giving
control over error conditions to
the programmer.

37

lx:store-addr -- write a prespecified number of
bytes from the Lisp side
to the S1500 side.

lx:load-disp -- read a prespecified number of bytes
from the $1500 side to the Lisp side.

lx:store-vector-disp -- write a vector of data from the
Lisp side to the shared memory to
be read from the Unix side.

lx:load-vector-disp -- read a vector of bytes of specified
length from the shared memory.

Method:

"Create the default direct stream on the Unix side."
lx:issue-sheU-command("mknod/dev/ds83 c 5 6291587")which

creates a direct stream, ds83, which passes characters
and may be referenced via a hexadecimal identifier as
#x600083 or in short form as #x83.

"Initiate the Unix side driver via a shell command."
lx:issue-sheU-command(unix-simu) which will start the

process on the Unix side.

"Open a direct stream for bidirectional data transfer."
Set data-stream to

lx:open-direct-stream(LX:LX-SDMA-DATA-STREAM-ID,:bidirectional)
which will open the stream referenced by #x83 for
bidirectional usage.

"Make the virtual to physical memory map used to access
the shared memory and attach to the direct stream."

Set lx-vm-map to lx:make-lx-vm-map(data-stream).

"Access the memory map and return the beginning address
of the virtual memory."

Set lx-addr to lx:lx-vm-map-vaddr(lx-vm-map).

"The shared memory has been created and all necessary information has been obtained."

38

"Protect the following from external exits by using the unwind-protect procedure."

*** unwind-protect ***

If the mode is READ-0NLY then
"READ data from the Unix side and use it on the Lisp side."

if irdt-proc then
lx:load-vector-disp(:float,4,1x-vm-map,apply(init-proc0)) otherwise
lx:load-vector-disp(:float,4,1x-vm-map,info-vector).

do until "The Unix side has sent a FINISHED message."
lx:load-disp(:float,0,1x-vm-map) equals FINISHED

Then lx:load-disp(:float,lx-addr,lx-vm-map,QU1T) and
send the data-stream a close message.

"If the information has not previously
been read by the Lisp side then read it."

If lx:load-disp(:float,0,1x-vm-map) equals MEM-READ Then

"Read the vector of information written to the SDMA by the Unix
side."

lx:load-vector-disp(:float,4,1x-vm-map,info-vector)
which loads the vector from the SDMA into info-vector.

"Indicate the information has been read."

lx: store-addr(:float,lx-addr,lx-vm-map,DONE-READING)

"Pass the information to the Lisp side
driver which uses the information."

apply(lisp-simu,info-vector) executes
the lisp-simu given the info-vector as an argument.

"If the information has previously been read by
the Lisp side then loop until the Unix side has
written new information."

** End of the do loop for the READ-ONLY mode. **

If the mode is WRITE-ONLY

"WRITE data from the Lisp side and use it on the Unix
side. Note: the Unix side must know how many words of
data are to be written by the Lisp side. This is the
responsibility of the Unix side drivers."

39

"Get the information from the Lisp side."
Set info-vector to apply(Lisp-simu,info-vector) which

retums the information required by the Unix side.

do until "The FINISHED message comes from the Lisp
side and the Unix side is done reading the
data sent by the Lisp side."

the fLrstelement in info-vector equals FINISHED
AND DONE-READING equals lx:load-disp(:float,0,1x-vm-map)
Then send the data-stream a close message,

and exit the do loop.

"If the information has been read by Unix
then write new information and reset the fag."

If lx:load-disp(:float,0,1x-vm-map) equals
DONE-READING and a FINISHED message has not been
received by the Lisp simulation routine then

"Write the information vector to Unix."

lx:store-vector-disp(:float,4,1x-vm-map,info-vector)
which stores the contents of info-vector
in the shared memory.

"Reset the read flag for Unix."

lx:store-addr(: float,lx-addr,lx-vm-map,MEM-READ)

"Get a new information vector!"

Set info-vector to apply(Lisp-simu,info-vector).

"If the information has not yet been read by the
Unix side, then loop until the data has been accessed."

** End of do loop for WRITE-ONLY mode. **

If the mode is READ-WRITE Then
"Data is sent both ways through the shared memory."

If init-proc Then
Ix:load-vector-disp(:float,4,1x-vm-map,apply(init-proc0)) otherwise
lx:load-vector-disp(: float,4,1x-vm-map,info-vector).

"The quit message comes from the Unix side just
as in the READ-ONLY mode presented above."

40

do until

lx:load-disp(:float,0,1x-vm-map) equals FINISHED
Then send the data-stream a CLOSE message
and exit the do loop.

"If the information has not previously
been read by the Lisp side then read it."

If lx:load-disp(:float,0,1x-vm-map) equals MEM-READ Then

"Read the vector of information."

lx:load-vector-disp(:float,4,1x-vm-map,info-vector)
which loads the contents of the SDMA memory into the info-vector.

"Pass the information to the Lisp side driver and
get new information to pass back to the Unix process."

Set info-vector to apply(Lisp-simu,info-vector).

"Write the information back to the Unix side."
lx:store-vector-disp(:float,4,1x-vm-map,info-vector)

which stores the new information in the
shared memory to be read by the Unix side."

"Indicate completion of the information
processing performed by the Lisp side.
This is an signal for the Unix process to perform
the necessary operations on the gupplied data."

lx:store-addr(:float,lx-addr,lx-vm-map,DONE-READING)

"If the information has not been processed and
written by the Unix side for the Lisp process,
then loop until the data has been transferred
or a FINISHED message is received."

** End of the do loop for READ-WRITE mode. **

"The clean-up functions for the unwind protect include,
sending a QUIT message to the Unix process and closing
the data stream used to send data to the shared memory."

lx:store-addr(:float,lx-addr,lx-vm-map,QUIT) which will
write a QUIT message to the data buffer.

Send the data-stream a close message.

** End of the unwind-protect form. **

41

BIBLIOGRAPHY

[1] "Explorer LXTM User's Guide," Texas Instruments Inc.
Data Systems Group, Austin Texas, Dec 1986, Rev. A. July 1987.

42

INDEX

Allocating Shared Memory (5) Problem Structure (5)
Amount of Shared Data (6)

Read Mode (8)

Block of Memory (4) Read/Write Mode (9)
Building Applications (18) Read_mode (28)

Read_writemode (33)

C Examples (13) Readdriver (10)
Close .SDMA (25) Readwritedriver (11)

Control Flag (7) SDMA (2)

Default Data Type (6) Sdma_driver (11), (26), (36)
Default Memory Size (7) Setup_SDMA (22)
Descriptor Blocks (7)
DONEREADING (7), (21) TI Explorer II-LX (1)

Example 1 (13) Unix_simu (12)
Example 2 (15) User Responsibilities (Unix Side) (10)
Example 3 (16)
Example of Memory Sharing Write Mode (9)
Example (3) Write_mode (31)

Writedriver (10)

Features of SDMA (2)
FINISHED (14), (21)
Fortran Examples (13) -.

Init-proc (12)

Limitations of SDMA (3)

Lisp_simu (11)
Load SDMA (12) •
Load Distribution Tape (12)

Make SDMA System (13)
Make Utility (18)
MAX_DATA (6), (21)
MEM_READ (7), (21)
Mode (12)

Num...pts (12)

43

I Jl ,ha Report Documentation PageNational Aeronautics and
Space Administration

1. Report No. 2. GovernmentAccession No. 3. Recipient's Catalog No.
NASA TM-103289

4. Title and Subtitle 5. Report Date

Shared Direct Memory Access on the Explorer II-LX September 1990

6. Performing Organization Code

7. Author(s) 8. PerformingOrganization Report No.

Jeffrey L. Musgrave E-5747

10. Work Unit No.

582-01-11
9. PerformingOrganization Name and Address

11. Contract or Grant No.
National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191 13. Type of Reportand PeriodCovered

12. SponsoringAgency Name and Address Technical Memorandum

NationalAeronauticsand SpaceAdministration 14. Sponsoring AgencyCode
Washington,D.C. 20546-0001

15. SupplementaryNotes

16. Abstract

Advances in Expert System technology and Artificial Intelligence have provided a framework for applying
automated "Intelligence" to the solution of problems which were generally perceived as intractable using more
classical approaches. As a result, hybrid architectures and parallel processing capability have become more
common in computing environments. The Texas Instruments Explorer II-LX is an example of a machine which
combines a symbolic processing environment, and a computationally oriented environment in a single chassis for
integrated problem solutions. This user's manual is an attempt to make these capabilities more accessible to a
wider range of engineers and programmers with problems well suited to solution in such an environment.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Parallel computing Unclassified- Unlimited
TI Explorer II-LX Subject Category 61
Multiprocessor environment

19. SecurityClassif. (of this report) 20. SecurityClassif. (of this page) 21. No. of pages 22. Price*
Unclassified Unclassified 47 A03

NASAFORM1626OCT88 *For sale by the National Technical Information Service, Springfield, Virginia 22161

Nat,ona,Aeronauticsan0 OOR,NCLASSMA,LIIIIII
Space Administration

Lewis Research Center ADDRESSCORRECTIONREQUESTED
Cleveland, Ohio 44135

Officla! Business

Penalty for Private Use $300 Postage and Fees Pa_d
National Aeronautics and
Space Adm_n_strahon

NASA 451

N/_A

.).

